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Abstract
We study an N = 1 supersymmetric model in an S1×R3 spacetime. We find
that by choosing appropriate boundary conditions for the contributing fields
supersymmetry can be preserved. However, if we add a hard supersymmetry
breaking term, we observe that for small values of the length of the S1

dimension, supersymmetry remains unbroken and breaks spontaneously when
the length exceeds a critical value. The final picture resembles the first-order
phase transition picture. A toy cosmological application is discussed.

PACS numbers: 11.30.Pb, 11.10.−z

Introduction

In general, when studying supersymmetric theories in flat spacetime, the background metric is
assumed to be ordinary Minkowski. Spacetime topology may affect the boundary conditions
of the fields that are integrated in the path integral. Given a class of metrics, several spacetime
topologies are allowed. Here we shall focus on a model that has S1×R3 topology underlying
the spacetime, S1 refers to a spatial dimension. The specific topology is a homogeneous
topology of the flat Clifford–Klein type [1]. Non-trivial topology implies non-trivial field
configurations that enter dynamically in the action. We shall investigate their impact using the
effective potential method [2, 6]. It is known that when supersymmetric theories are studied in
non-trivial spacetimes (or at finite temperature), supersymmetry is, in general, spontaneously
broken. This is due to the appearance of vacuum terms which have different coefficients
for fermions and bosons. As a result, the effective potential of the theory has no longer its
minimum at zero, thus supersymmetry is broken. This quite general phenomenon can only be
avoided, if in some way these vacuum terms are canceled [12].

The existence of non-trivial field configurations due to non-trivial topology (twisted
fields) was first pointed out by Isham [3] and then adopted by others [4, 5, 13]. In our case,
the topological properties of S1×R3 are classified by the first Stieffel class H 1(S1×R3, Z2̃)
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which is isomorphic to the singular (simplicial) cohomology group H1(S
1×R3, Z2) because

of the triviality of the Z2̃ sheaf. Now, it is known that H 1(S1×R3, Z2̃) = Z2 classifies the
twisting of a bundle. To be exact, it describes and classifies the orientability of a bundle
globally. In our case, the classification group is Z2, and we have two locally equivalent
bundles, which are however different globally, i.e. cylinder-like and moebius strip-like. The
mathematical lying behind is to find the sections that correspond to these two bundles,
classified completely by Z2 [3]. The sections we shall consider are real scalar fields and
Majorana spinor fields. These fields carry a topological number called moebiosity (twist),
which distinguishes between twisted and untwisted fields. The twisted fields obey anti-
periodic boundary conditions, while untwisted fields periodic in the compactified dimension
(see below). Normally one takes scalars to obey periodic and fermions anti-periodic boundary
conditions, disregarding all other configurations that may arise from non-trivial topology.
Here we shall consider all these configurations. If ϕu, ϕt and ψt, ψu denote the untwisted and
twisted scalar and twisted and untwisted spinor respectively, then the boundary conditions
in the S1 dimension are ϕu(x, 0) = ϕu(x, L) and ϕt (x, 0) = −ϕt (x, L) for scalars, and
ψu(x, 0) = ψu(x, L), ψt (x, 0) = −ψt(x, L) for fermions, where x stands for the remaining
two spatial and one time dimensions not affected by the boundary conditions. Spinors (both
Dirac and Majorana) still remain Grassmann quantities. We assign the untwisted fields twist h0

(the trivial element of Z2) and the twisted fields twist h1 (the non-trivial element of Z2). Recall
that h0 + h0 = h0 (0 + 0 = 0), h1 + h1 = h0 (1 + 1 = 0), h1 + h0 = h1 (1 + 0 = 1). We require
the Lagrangian to have h0 moebiosity. The topological charges flowing at the interaction
vertices must sum to h0 under H 1(S1×R3, Z2̃). For supersymmetric models, supersymmetry
transformations impose some restrictions on the twist assignments of the superfield component
fields [5].

Grassmann fields cannot acquire vacuum expectation value (vev) since we require the
vacuum value to be a scalar representation of the Lorentz group. Thus, the question is focused
on the two scalars. The twisted scalar cannot acquire nonzero vev [4], consequently, only
untwisted scalars are allowed to develop vev’s.

In the literature, twisted fields have frequently been used, for example in the Scherk–
Schwarz mechanism [26], where the harmonic expansion of the fields is of the form

φ(x, y) = eimy

∞∑
n=−∞

φn(x) e
i2πny

L . (1)

The ‘m’ parameter incorporates the twist mentioned above. This treatment is closely related to
automorphic field theory [21, 22] in more than four dimensions (which is an alternative to the
one used by us). The Scherk–Schwarz mechanism is a well-known mechanism that generates
supersymmetry breaking and is frequently used for compactifications in extra dimensions
models [23, 25, 28]. Also interesting generalizations of the compactification procedure using
orbifolds have been introduced, in order to solve the lack of fermion chirality in odd dimensions
[27, 29] (for a modern enlighting treatment see [24]). It would be worthwhile mentioning
interesting alternatives to the works mentioned above such as non-commutative field theories at
finite temperature [35, 38–40] and non-commutative field theories [32, 36, 37], where in some
of them the gauge symmetry breaking problem is considered and the gauge Higgs unification
in higher dimensions is also studied [30] (for a recent application of non-commutative field
theories, see [31]).

The model under consideration is described by the global N = 1, d = 4 supersymmetric
Lagrangian

L = [
�+

1�1
]
D

+ [�+�]D +
[m1

2
�2 +

g1

6
�3 +

m

2
�2

1 + g��2
1

]
F

+ H.c., (2)
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where �1, � are chiral superfields and the superpotential from which the interaction part of
the lagrangian arises is

[
m1
2 �2 + g1

6 �3 + m
2 �2

1 + g��2
1

]
F

. In the above

� = ϕu(x) +
√

2θψu(x) + θθFϕu
+ i∂µϕu(x)θσµθ̄

− i√
2
θθ∂µψu(x)σµθ̄ − 1

4
∂µ∂µϕ+

u(x)θθ θ̄ θ̄ (3)

is a left chiral superfield. It contains the untwisted scalar field components and the
untwisted Weyl fermion. Although the untwisted scalar is complex, we shall use the real
components which will be the representatives of the sections of the trivial bundle classified by
H 1(S1×R3, Z2̃). Moreover,

�1 = ϕt (x) +
√

2θψt (x) + θθFϕt
+ i∂µϕt (x)θσµθ̄

− i√
2
θθ∂µψt(x)σµθ̄ − 1

4
∂µ∂µϕ+

t (x)θθ θ̄ θ̄ (4)

is another left chiral superfield containing the twisted scalar field and the twisted Weyl fermion.
Writing down (2) in a component form, we get (writing Weyl fermions in the Majorana
representation):

L = ∂µϕ+
u∂µϕu −

∣∣∣m1ϕu +
g1

2
ϕuϕu + gϕ2

t

∣∣∣2
+ i	tγ

µ∂µ	t − 1

2
m	t	t

− g1

4
(	u	u − 	uγ5	u)ϕu − g1

4
(	u	u + 	uγ5	u)ϕ

+
u + ∂µϕ+

t ∂µϕt

− |mϕt + 2gϕtϕu|2 + i	uγ
µ∂µ	u − 1

2
m1	u	u

− g

4
(	t	t − 	tγ5	t)ϕu − g

4
(	t	t + 	tγ5	t)ϕ

+
u . (5)

We can explicitly check that moebiosity is conserved at all interaction vertices, i.e. equals h0.
The moebiosity of ϕu and 	u is h0, while for ϕt and 	t is h1. One can use the Z2 cyclic
group properties to prove that the Lagrangian (5) has moebiosity h0. The complex field ϕu

can be written in terms of real components as ϕu = χ + iϕu2
/
√

2, where χ = v + (ϕu1
)/

√
2

(v is the classical value). Thus, ϕu1 and ϕu2 are real untwisted field configurations belonging
to the trivial element of H 1(S1 × R3, Z2̃) and satisfying periodic boundary conditions in the
compactified dimension. The twisted scalar field can be written as ϕt = (ϕt1

+ iϕt2
)/

√
2, since,

this field, being a member of the non-trivial element of H 1(S1 × R3, Z2̃) cannot acquire a
vev. The tree-order masses of the two Majorana fermion fields and the four bosonic fields are
calculated to be

m2
b1

= m2
1 + 3g1m1v + 3g2

1v
2/2

m2
b2

= m2
1 + g1m1v + g2

1v
2/2

m2
t1

= m2 + 4gmv + 4g2v2 + g2m1v/
√

2 + g2g1v
2/4 (6)

m2
t2

= m2 + 4gmv − g2m1v/
√

2 − g2g1v
2/4

mf1 = m1 + g1v, mf2 = m + 2gv.

In (6) mb1 ,mb2 are the masses of the untwisted bosons (ϕu1 and ϕu2 respectively), mt1 ,mt2 are
the masses of the twisted bosons (ϕt1 and ϕt2 ) and, finally, mf1 ,mf2 are the untwisted Majorana
fermion and twisted Majorana fermion masses respectively (	u and 	t ). We can check that
the general tree level result for theories with rigid supersymmetry in terms of chiral superfields
is satisfied (see [7]), i.e.,

ST r(M2) =
∑

j

(−1)2j (2j + 1)m2
j = 0. (7)
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Also, the following relations hold true:

m2
b1

+ m2
b2

= 2m2
f1

, m2
t1

+ m2
t2

= 2m2
f2

. (8)

Since twisted scalars cannot acquire vacuum expectation value, supersymmetry is not
spontaneously broken at tree level, like in the O’ Raifeartaigh models. The auxiliary field
equations,

F +
ϕu

= m1ϕu +
g1

2
ϕ2

u + gϕ2
t = 0 F +

ϕt
= mϕt + 2gϕuϕt = 0, (9)

imply that ϕu = 0 and ϕt = 0 and consequently v = 0, thus, at tree level, no spontaneous
supersymmetry breaking occurs.

We now proceed by assuming that the topology is changed to S1×R3, while the local
geometry remains Minkowski. The metric is

ds2 = dt2 − dx2
1 − dx2

2 − dx2
3 , (10)

with −∞ < x2, x3, t < ∞ and 0 < x1 < L with the pointsx1 = 0 and x1 = L periodically
identified. The boundary conditions for the fields are

ϕu(x1, x2, x3, t) = ϕu(x1 + L, x2, x3, t)

ϕt (x1, x2, x3, t) = − ϕt (x1 + L, x2, x3, t)
(11)

	u(x1, x2, x3, t) = 	u(x1 + L, x2, x3, t)

	t (x1, x2, x3, t) = −	t(x1 + L, x2, x3, t).

In order to calculate the effective potential of the theory, we Wick rotate the time direction
t → it thus giving the background metric the Euclidean signature [13]. The twisted fermions
and twisted bosons will be summed over odd Matsubara frequencies, while the untwisted
fermions and untwisted scalars will be summed over even Matsubara frequencies [2, 6]. We
shall adopt the DR

′
renormalization scheme [7]. The Euclidean effective potential the at

one-loop level is

V = V0 +
1

64π2L

∞∑
n=−∞

∫
d3k

(2π)3

(
ln

[
k2 +

4π2n2

L2
+ m2

b1

]

− 2 ln

[
k2 +

4π2n2

L2
+ m2

f1

]
+ ln

[
k2 +

4π2n2

L2
+ m2

b2

]
− 2 ln

[
k2 +

π2(2n + 1)2

L2
+ m2

f2

]
+ ln

[
k2 +

π2(2n + 1)2

L2
+ m2

t1

]
+ ln

[
k2 +

π2(2n + 1)2

L2
+ m2

t2

])
. (12)

V0 includes the tree and the one-loop continuum corrections,

V0 = m2
1v

2 + g2
1m1v

3 +
g2

1v
4

4
+

1

64π2

(
m4

b1

(
ln

[
m2

b1

µ2

]
− 3

2

)

+ m4
b2

(
ln

[
m2

b2

µ2

]
− 3

2

)
+ m4

t1

(
ln

[
m2

t1

µ2

]
− 3

2

)
+ m4

t2

(
ln

[
m2

t2

µ2

]
− 3

2

)

− 2m4
f1

(
ln

[
m2

f1

µ2

]
− 3

2

)
− 2m4

f2

(
ln

[
m2

f2

µ2

]
− 3

2

) )
, (13)
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and µ is the renormalization scale, being of the order of the largest mass [10]. Furthermore,
we shall assume that mL � 1. This is required for the validity of perturbation theory [11, 16].

It is well known that when one considers only twisted fermions and untwisted bosons
in S1×R3 (like in thermal field theories), vacuum contributions ∼ L−4 do not cancel and
supersymmetry is spontaneously broken. The non-cancelation occurs because bosons and
fermions satisfy different boundary conditions. In our model the field content is such that the
cancelation of vacuum contributions is being enforced, after having included all topologically
inequivalent allowed field configurations.

The leading-order contribution to the one-loop effective potential is now given by
[2, 19, 20]:

V = m2
1v

2 + g2
1m1v

3 +
g2

1v
4

4
−3

(
2m4

f1
− m4

b1
− m4

b2

)
4096π4

− 3
(
2m4

f2
− m4

t1
− m4

t2

)
256π4

+
3
(
2m4

f1
− m4

b1
− m4

b2
+ 2m4

f2
− m4

t1
− m4

t2

)
128π2

+
(γ − ln[4π ])

(
2m4

f1
− m4

b1
− m4

b2

)
1024π4

+

(
γ + ln

[
2
π

])(
2m4

f2
− m4

t1
− m4

t2

)
64π4

+

(
2m3

f1
− m3

b1
− m3

b2

)
384Lπ3

−
(
2m2

f1
− m2

b1
− m2

b2

)
768π2L2

+

(
2m2

f2
− m2

t1
− m2

t2

)
384π2L2

+
2m4

f1
ln

[
Lmf1

] − m4
b2

ln
[
Lmb2

] − m4
b1

ln
[
Lmb1

]
1024π4

+
2m4

f2
ln

[
Lmf2

] − m4
t2

ln
[
Lmt2

] − m4
t1

ln
[
Lmt1

]
64π4

−
(
2m4

f1
ln

[m2
f1

µ2

] − m4
b2

ln
[m2

b2
µ2

] − m4
b1

ln
[m2

b1
µ2

])
64π2

−
(
2m4

f2
ln

[m2
f2

µ2

] − m4
t2

ln
[m2

t2
µ2

] − m4
t1

ln
[m2

t1
µ2

])
64π2

. (14)

Since relation (8) holds, the terms proportional to 1
L2 cancel out [12]. Also, the minimum of

the potential vanishes at v = 0 and supersymmetry is preserved. Indeed, upon expanding (14)
for small values of v we get

V � m2
1v

2 + O(v3). (15)

In figure 1 we plot the effective potential for the limiting case mL = 1. The other numerical
values are chosen to be m1 = 200,m = 7000, g1 = 0.001, g = 0.09, µ = 7000.

Next, we introduce into the Lagrangian (5) a term of the form g3χ
2ϕ2

u2
, where g3 is a

dimensionless coupling constant (χ = v + ϕu1/
√

2). This term, being non-holomorphic and
hard, breaks supersymmetry explicitly. Since χ develops a vev, ϕu2 will acquire an additional
mass term of the form g3v

2. This way, the masses of the fields now become

m2
b1

= m2
1 + 3g1m1v + 3g2

1v
2
/

2

m2
b2

= m2
1 + g1m1v + g2

1v
2
/

2 + g3v
2

(16)
m2

t1
= m2 + 4gmv + 4g2v2 + g2m1v/

√
2 + g2g1v

2/4

m2
t2

= m2 + 4gmv − g2m1v/
√

2 − g2g1v
2/4

mf1 = m1 + g1v, mf2 = m + 2gv.
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Figure 1. The supersymmetric effective potential.

As expected, supersymmetry is now broken and relation (7) becomes

2m2
f1

− m2
b1

− m2
b2

= g3v
2, m2

t1
+ m2

t2
= 2m2

f2
. (17)

One can see that the supersymmetric minimum at v = 0 is still preserved. Indeed, V can be
written as

V �
(
m2

1 +
g3

768π2L2

)
v2 + O(v3). (18)

Upon closer examination, we can see that in the continuum limit, the supersymmetric vacuum
becomes metastable and a second non-supersymmetric vacuum appears. Including finite size
corrections, we see that for small L the effective potential has a unique supersymmetric
minimum at v = 0. As L increases, a second minimum develops, which becomes
supersymmetric at the critical value Lc= 1

21571 . When L > Lc, the second minimum breaks
supersymmetry and becomes energetically more preferable than the supersymmetric one
[14, 15]. This said behavior of the potential is always valid whenever g3 � g1 and for
m1
m

� g3. Using the same numerical values as before, we plot the effective potential for
g3 = 0.5, first in the continuum limit (figure 2), and then including L-dependent corrections
(figure 3).

Let us discuss the above results. g3, g1 are couplings among the untwisted superfield,
g3 corresponding to the supersymmetry breaking term. If the g3 interaction is stronger than
g1 and if the mass (m) of the twisted superfield is larger than the untwisted one (m1), then
the following picture occurs. For a small length L of the S1 dimension supersymmetry is not
broken (figure 3). As L grows larger, a second minimum appears which is not supersymmetric
(L > Lc). There exists a small barrier separating the two minima (figure 3), and there is a
possibility of barrier penetration between them. This resembles the first-order phase transition
picture.
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Figure 2. The continuum effective potential.
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Figure 3. The effective potential including finite size corrections.

Discussion

In this section a brief qualitative application (although fictitious) of the above results is
presented. We begin with a toy universe that has just come out of its strong gravity period, and
its particle content (matter) is described by (5) with the addition of the hard supersymmetry
breaking term g3χ

2ϕ2
u2

. The back reaction of gravity on field theory is considered small (i.e.
field theory calculations made in the previous part considering flat background, are consistent).
This toy universe’s expansion is described by
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ds2 = dt2 − a2(t) dx2
1 − b2(t) dx2

2 − c2(t) dx2
3 , (19)

a homogeneous Clifford–Klein metric (known as the Bianchi I cosmological model), with
x1, x2, x3, as in (10). In (19), a(t), b(t), c(t), describe the scale factors of the two infinite and
of the compact dimension respectively. Also we assume

a(t) = b(t) = kc(t), (20)

with k � 1.
Figure 3 motivates us to think as follows. At small lengths the toy universe’s ground state

is the supersymmetric vacuum, although we had broken supersymmetry using a hard term,
something usually unexpected. As the length of the compact dimension grows, the toy universe
‘acknowledges’ the presence of the other vacuum (in terms of its quantum one-loop effective
potential) and at some point quantum penetrates to the other vacuum, the non-supersymmetric
one. Therefore, at small lengths of the compact dimension, supersymmetry was not broken
and as the length grows, supersymmetry breaking occurs. This observation motivated the use
of non-trivial topology in our calculations. It seems that using a compact dimension in the
present model, supersymmetry breaking occurs dynamically after some critical length of the
compact dimension, although supersymmetry is expected to be broken for all lengths (this
would exactly be the effect of a hard supersymmetry breaking term).

Let us now do some toy cosmology on this toy universe. V (0) is the minimum of the
effective potential at the origin (note V (0) = 0), and V (v1) is the minimum after quantum
penetration (the non-supersymmetric vacuum). We fix this toy universe’s cosmological
constant to be (8πG)−1� = −V = −(V (v1) − V (0)) (we quote the reason later on).
It can easily be seen that � > 0.

In general, the Friedmann equation describing its evolution is( ȧ

a

)2
= 8πG

3

(
ρ +

�

8πG

)
, (21)

referred to the x1 dimension (the analysis on the other dimension and to the compact one is
similar using (20) and for brevity we omit it. For details see [5]).

When this toy universe is at the V (0) vacuum state, the energy density is ρ = V (0) = 0.
The Friedmann equation reads( ȧ

a

)2
= 8πG

3

( �

8πG

)
, (22)

and without getting into much detail (see [5]), an inflationary solution follows in all space
dimensions, being of the form

a(t) ∼ e
√

�t , (23)

with a(t) = b(t) = kc(t). Note that the rate of the expansion is the same for all dimensions.
As this toy universe inflates, its quantum vacuum state is the supersymmetric vacuum, until
for some length quantum tunneling occurs (due to one-loop quantum effects), and the new
vacuum state is V (v1), the new minimum of the effective action. During the quantum vacuum
penetration, the energy release (something like latent heat) [34] is of the order L−4

p which
thermalizes the matter content at a temperature Tp, with

L−4
p ∼ T 4

p , (24)

Lp and Tp characterizing the ‘phase transition’ point.
After thermalization, the energy density is ρ ∼ T 4

p + V (v1) and the Friedmann equation
reads ( ȧ

a

)2
∼ 8πG

3

(
T 4

p

)
, (25)
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(we fixed � in order to cancel the value of V (v1)). So after vacuum penetration the toy
universe follows a radiation dominated expansion (note that the maximum temperature ever
reached was the thermalization temperature Tp [34]).

The above is a very attractive picture, although fictitious. Let us point out its main
features. One starts with a toy universe filled with fermions and bosons interacting in a non-
supersymmetric way. The toy universe is at a supersymmetric vacuum (unexpectedly) when its
magnitude (specifically the compact dimension magnitude) is small, but as it evolves spatially
(inflation in our setup, or alternatively dynamical Casimir effect [18]) quantum penetrates to a
non-supersymmetric vacuum, which is energetically preferable. So at the early toy universe,
supersymmetry was not broken (at least the vacuum quantum state did not realize broken
susy), although the matter content of it, interacts in a non-supersymmetric way, but susy
breaks dynamically (quantum tunneling) [14, 15] when the toy universe evolves at larger
magnitudes.

It has to be noted that if, in this toy universe, observations do not suggest non-trivial
topology in its spatial dimensions, then the compact dimension magnitude must be larger than
the particle horizon (which can be achieved during inflation).

Conclusions

We have investigated the possibility of altering the spacetime topology, without breaking
N = 1, d = 4 supersymmetry. We have explicitly demonstrated, by means of a toy
model, that such a construction is possible in the case of S1×R3 topology. Introducing
an explicit supersymmetry breaking term, we find that, under suitable conditions, a
second supersymmetric vacuum appears. For small length of the S1 dimension, only the
supersymmetric vacuum appears. As the length grows larger the second minimum appears
which, after a critical value, becomes non-supersymmetric. This picture resembles the first-
order phase transition picture.
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